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The need for predictive models of signal-transduction
 systems 

  These systems mediate cellular information processing and
 regulate cellular phenotypes 

  They are complex 
  Molecular changes that affect cell signaling cause/sustain

 disease (e.g., cancer) 
  Numerous drugs that target signaling proteins are currently in

 clinical trials 
•   Spectacular successes (e.g., imatinib treatment of CML) 
•   But results are disappointing for many patients 

  Many clinical trials are underway to test combinations of drugs
 (clinicaltrials.gov) 
•   There are too many combinations to consider all possibilities in trials 



Value added by modeling 

  We can use models to organize information about a system with
 precision 
•   Introduces greater rigor and discipline 

  We can determine the logical consequences of a model specification 
•   Design principles can be elucidated (key for synthetic biology) 
•   Certification (essential for personalized medicine) 



A signaling protein is typically composed of multiple
 components (subunits, domains, and/or linear motifs)
 that mediate interactions with other proteins 

CD3E: 184PNPDYEPIRKGQRDLYSGL202 

PRS: PxxDY 

ITAM: YxxL/I(x6-8)YxxL/I 

Lck 

Lck-SH2 (1bhh) 

TCR/CD3 

Kesti T et al. (2007) J. Immunol.  179:878-85. 
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Some domains are multivalent and mediate 
oligomerization via domain-domain interactions 

A hexamer of death domains

Weber and Vincenz (2001) FEBS Lett.
C.-T. Tung (Los Alamos)
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There are many possible 
protein complexes! 



Domain-motif interactions are often controlled by post
-translational modifications 

Schulze WX et al. (2005) Mol. Syst. Biol. 

There are many 
possible protein 
phosphoforms! 



518 protein kinases (~2% of human genes) 
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Manning G et al. (2002) 
Science 298:1912-34. 

There are 
phosphatases too! 



Signaling proteins typically contain multiple 
phosphorylation sites (S/T/Y) 

> 50% are 
phosphorylated at 2 or 
more sites 

Phospho.ELM database v. 3.0 (http://phospho.elm.eu.org) 



There are many different kinds of post-translational
 modifications of proteins 

Walsh CT et al. (2005) Angew. Chem. Int. Ed. Engl. 44:7342-72. 



Priming – cooperative phosphorylation of neighboring
 kinase substrates is common 

Coba MP et al. (2009) Sci. Signal. 



Distinct time courses of phosphorylation for different
 amino acid residues within the same protein 

in this case). Furthermore, we have submitted our phos-
phorylation data to the Phospho.ELM database (Diella
et al., 2004) and the Human Proteome Reference Data-
base (Peri et al., 2004) and have uploaded previous phos-
phoproteome data sets to Phosida.

DISCUSSION

We have developed and applied a strategy combining
triple-encoding SILAC for monitoring activation profiles,

SCX and TiO2 chromatography for phosphopeptide en-
richment, and high-accuracy mass spectrometric char-
acterization. Identification of numerous phosphorylation
sites of transcription factors and other low-abundance
regulatory proteins demonstrates that the technology
can probe the phosphoproteome in considerable depth.
The approach is completely generic for identification of
key phosphorylation events in signaling pathways and is
applicable to any cell culture system that can be SILAC
labeled. It can also be used to study crosstalk between

Figure 5. Regulatory Information from Specific Phosphorylation Sites
(A) EGF receptor and negative feedback. Tyrosine phosphorylation sites (pY) have fast kinetics, whereas serine/threonine phosphorylation (pS, pT)

occurs with a time delay.

(B) Activation profiles from the mitogen-activated protein kinase (MAPK) family.

(C) Translocation of activated STAT5 from the cytosol to the nucleus.

(D) Multiply phosphorylated transcription factor Fra2. Only one of the phosphopeptides is regulated by EGF.

(E) Related but differentially regulated transcription factors. Both JunD and JunB are phosphorylated at the paralogous sites, but only in JunD are

these sites regulated (shown by overlapping peptides for the Jun B site, yellow and violet traces).

(F) Profile for a kinase and its known substrates. p38 starts to phosphorylate its substrates shortly after its own phosphorylation and activation.

644 Cell 127, 635–648, November 3, 2006 ª2006 Elsevier Inc.

Schulze WX et al. (2005) Mol. Syst. Biol. 

Olsen JV et al. (2006) Cell 127:635-48. 



Combinatorial complexity – a serious problem for the 
 conventional modeling approach 

Epidermal growth factor receptor (EGFR) 

9 sites => 29=512 phosphorylation states  

Each site has ≥ 1 binding partner 
  => more than 39=19,683 total states  

EGFR must form dimers to become active 
  => more than 1.9x108 states  



The textbook approach 



Network (model) size tends to grow nonlinearly
 (exponentially) with the number of molecular
 interactions in a system when molecules are structured 

Science’s STKE re6 (2006) 

There are only three interactions.  We can 
use a “rule” to model each of these 
interactions. 



If you can write the model by hand, it may look like a
 mechanistic model, but it’s probably just a complicated
 fitting function 

A reaction scheme 
incorporated in many 
published models of 

EGFR signaling 



Rule-based modeling solves the problem of
 combinatorial complexity 

  Inside a Chemical Plant 
•   Large numbers of molecules… 
•   …of a few types 
•   Conventional modeling works fine (a good idea since 1865) 

  Inside a Cell 
•   Possibly small numbers of molecules… 
•   …of many possible types 
•   Rule-based modeling is designed to deal with this situation (new) 

 ZAP-70 
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Rule-based modeling: basic concepts 

Graphs represent molecules, their component parts, and “internal states” 
Molecules, components, and states can be directly linked to annotation in

 databases 
Graph-rewriting rules represent molecular interactions 
A rule specifies the addition or removal of an edge to represent binding or

 unbinding, or the change of an internal state to represent, for example, post
-translational modification of a protein at a particular site 

TCR(Y111~p)+ZAP70(SH2)<->TCR(Y111~p!1).ZAP70(SH2!1) 



Structured objects are naturally represented by graphs,
 so we use graphs to represent molecules and
 molecular complexes in signal-transduction systems 

Shc Grb2 

P
TB

 

EGF EGFR 
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Y
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Blinov ML et al. (2006) BioSystems 



Use graph-rewriting rules to represent interactions 

EGF binds EGFR 

+ 

EGFR 

L1 EGF 
CR1 

k+1 

k-1 

begin reaction rules

 EGF(R)+EGFR(L1,CR1)<->EGF(R!1).EGFR(L1!1,CR1)

end reaction rules
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Early events in EGFR signaling, illustrated with the
 same (sub)graphs used to specify a rule-based model
 for these events 

EGF = epidermal growth factor 

EGFR = epidermal growth factor receptor 
1. EGF binds EGFR 

EGFR 

EGF 

ecto 

Blinov ML et al. (2006) BioSystems 



Early events in EGFR signaling 

1. EGF binds EGFR 

EGFR 

EGF 

dimerization 2. EGFR dimerizes 



Early events in EGFR signaling 

1. EGF binds EGFR 

EGFR 

EGF 

2. EGFR dimerizes 

3. EGFR transphosphorylates a  
 copy of itself 

P 
P P 

P Y1092 
Y1172 



Early events in EGFR signaling 

1. EGF binds EGFR 

EGFR 

EGF 

2. EGFR dimerizes 

3. EGFR transphosphorylates P 
P P 
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4. Grb2 binds phospho-EGFR 
Grb2 

Y1092 

S
H

2 
Grb2 pathway 



Early events in EGFR signaling 

1. EGF binds EGFR 

EGFR 

EGF 

2. EGFR dimerizes 

3. EGFR transphosphorylates P 
P P 

P 

4. Grb2 binds phospho-EGFR 

Grb2 

Y1092 S
H

3 

5. Sos binds Grb2 (Activation Path 1) 

Sos 

Grb2 pathway 



Early events in EGFR signaling 

1. EGF binds EGFR 

EGFR 

EGF 

2. EGFR dimerizes 

3. EGFR transphosphorylates P 
P P 

P 

4. Shc binds phospho-EGFR 
Y1172 

Shc 

P
TB

 
Shc pathway 



Early events in EGFR signaling 

1. EGF binds EGFR 

EGFR 

EGF 

2. EGFR dimerizes 

3. EGFR transphosphorylates P 
P P 

P 

4. Shc binds phospho-EGFR 
Y1172 

Shc 

Y
317 5. EGFR transphosphorylates Shc 

P 

Shc pathway 



Early events in EGFR signaling 

1. EGF binds EGFR 
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Early events in EGFR signaling 

1. EGF binds EGFR 

EGFR 

EGF 

2. EGFR dimerizes 

3. EGFR transphosphorylates  P 
P P 

P 

4. Shc binds phospho-EGFR 
Y1172 

Shc 

5. EGFR transphosphorylates Shc 

P 

6. Grb2 binds phospho-Shc 

Grb2 

S
H

3 

7. Sos binds Grb2 (Activation Path 2) 

Sos 

Shc pathway 



Summary of molecules and their interactions in a
 simple model of early events in EGFR signaling 

EGF(r)

EGFR(l,d,Y1092~U~P,Y1172~U~P)

Shc(PTB,Y317~U~P)

Grb2(SH2,SH3)

Sos(PR)

Blinov et al. (2006) 



Combinatorial complexity of early events 

Monomeric species 

EGFR 

2 states 

or 



Combinatorial complexity of early events 

Monomeric species 

EGFR 

2 states 

4 states 

P 
Sos 

P 
Grb2 

P or or 

or 



Combinatorial complexity of early events 

Monomeric species 

EGFR 

2 states 

4 states 
6 states 

P P 
Sos 

P P 
Grb2 

P P 

P 
Shc 

P 
or or or 

or or 



Combinatorial complexity of early events 

Monomeric species 

EGFR 

2 states 

4 states 
6 states 

48 species 



Combinatorial complexity of early events 

Monomeric species 

EGFR 

2 states 

4 states 
6 states 

48 species 

Dimeric species 

EGF 

24 states 
N(N+1)/2 = 300 species 



A conventional model for EGFR signaling 

The Kholodenko model* 

5 proteins 

18 species 
34 reactions 

*J. Biol. Chem. 274, 30169 (1999)



Assumptions made to limit combinatorial complexity 

1.  Phosphorylation inhibits 
dimer breakup 

No modified monomers 

 P 
 P 

 P 

Bottleneck 



Assumptions made to limit combinatorial complexity 

2.  Adaptor binding is 
competitive 

No dimers with more than one 
associated adapter 

 P 
 P  P 

 P 
 P 



Reminders 

Graphs represent molecules, their component parts, and states 
A (graph-rewriting) rule specifies the addition or removal of an edge to

 represent binding or unbinding, or the change of a state label to
 represent, for example, post-translational modification of a protein at a
 particular site 

A model specification is readily visualized and compositional 
Molecules, components, and states can be directly linked to annotation in

 databases 

Ty Thomson (MIT) - yeastpheromonemodel.org 



Molecules are modeled as graphs 

Shc Grb2 

P
TB

 

EGF EGFR 

Y1172 

Y1092 

CR1 
L1 

Molecules 

Y
317 

S
H

2 
S

H
3 

Sos 

Nodes represent components of proteins 

Y components may have labels: P or 
Y pY 



Molecular complexes are simply connected molecules 

P 
P P 

P 
P 

Edges represent bonds between components 

Bonds may be intra- or intermolecular 

No need to introduce a 
unique name (e.g., X123 
or ShP-RP-G-Sos) for 
each chemical species, 
as in conventional 
modeling 



Patterns (subgraphs) define sets of chemical species
 with common features  

P 

EGFR 

Y1092 
selects 

P P 
P 

Suppressed components don’t affect match 

P 
P P 

P 
P 
P 

P , , , , … 

A pattern that matches EGFR phosphorylated at Y1092 

Shaded background indicates any bonding state 



A reaction rule, composed of patterns, defines a class
 of reactions 

EGF binds EGFR 

+ 

EGFR 

L1 EGF 
CR1 

k+1 

k-1 

Patterns select reactants (by matching graphs representing chemical 
species) and specify a transformation of the graphs representing 
reactants - Addition of bond between EGF and EGFR in this case 



Dimerization rule eliminates previous assumption
 restricting breakup of receptors 

+ 

k+2 

k-2 
EGFR 

EGF 

dimerization 

No free lunch: According to this rule, dimers form 
and break up with the same fundamental rate 
constants regardless of the states of cytoplasmic 
domains, which is an idealization. 

EGFR dimerizes (600 reactions are implied by this one rule) 



Rule-based version of the Kholodenko model 

  5 molecule types 

  23 reaction rules 

  No new rate parameters! – Q: How? A: a rule provides a coarse-grained
 description of the reactions implied by the rule.  All these reactions are
 parameterized by the same fundamental rate constant(s). 

18 species 

34 reactions 

356 species 
3749 reactions 

Blinov et al. Biosystems 83, 136 (2006). 
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Consider interaction of a trivalent ligand with a bivalent cell
-surface receptor 
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R.G. Posner (TGen) and P.B. Savage (BYU)



Signaling by FceRI begins with ligand-induced receptor
 clustering 

 



Slide 52 

Trivalent ligands 

Posner et al., 2007, 
Org. Lett, 9:3551 

 ~13 nm 

 Compound 6a 



Rule-based model specification corresponding to
 equilibrium model of Goldstein and Perelson (1984) 

Equivalent-site TLBR model 

No cyclic aggregates 



Goldstein-Perelson and TLBR models 

 Goldstein and Perelson (1984) Biophys. J., 45:1109 

 Yang et al. (2008) Phys. Rev. E, 78:31910 

€ 

= 3k+1NL ,∞ /koff

= 
k +

2 
N

R 
/k

of
f

 Receptor  Ligand 

•   Equilibrium properties: 



Protocol for “generate-first” simulation 

 1.  Define molecules as graphs and interactions as graph-
rewriting rules. 

 2.  Specify concentrations and rate constants 

3.  Generate the implied reaction network and then simulate 
the network dynamics using conventional methods 

 Graphs 
and rules 

 BIONETGEN  Reaction 
Network 

  
Simulator   Output 

 http://bionetgen.org 

 Faeder, Blinov, and Hlavacek, Methods Mol. Biol. (2009) 



“Generate-first” method starts with seed species 

Ligand Receptor



After first round of rule application 



After the second round of rule application 



Gillespie method: generate-first or on-the-fly simulation 

 1 

 0 

 2 

 3 

 Iterative application of rules to 
generate network (species, 
reactions) 
 Set x(0) 
 Calculate a(0),  

€ 

a0(0) = ai(0)
i
∑

 Select next event time 

€ 

τ = − lnρ1 /a0(t)

 Select next reaction, r 

€ 

min r s.t. ai(t) ≥ ρ2a0(t)
i=1

r

∑

 Update x, a(t), 
a0, t 

€ 

x(t + τ) = x(t) + Sr

€ 

Update only ai(t), i ∈dep(r) *

 *rxn q depends on rxn r iff. 
a reactant of rxn q is a 
reactant or product of rxn r.  



Rule-derived network can be too large to simulate using
 conventional population-based methods 



Performance of on-the-fly (OTF) simulation method 

 

Yang et al. (2008) Phys. Rev. E 



 Agents/particles in simulation “box” 

 … 

Network-free simulation 



 A  B 

 + 
 kn 

 A  B 

 Rule n 

 Agents/particles 

 … 

 … 

 … 

 Cumulative rate = an = kn [A][B]  

 Rules are event generators 

Network-free simulation 



 A  B 

 + 
 kn 

 A  B 

 Rule n 

 Agents/particles 

 … 

 Cumulative rate = an 

 Event n is chosen to fire 
using Gillespie algorithm  

Network-free simulation 



 A  B 

 + 
 kn 

 A  B 

 Rule n 

 Agents/particles 

 … 

 Cumulative rate = an 

 Reactant molecules chosen randomly 

Network-free simulation 



 A  B 

 + 
 kn 

 A  B 

 Rule n 

 Agents/particles 

 … 

 Cumulative rate = an 

 Rule transformation is applied 

Network-free simulation 



Kinetic Monte Carlo method for “network-free” simulation
 of rule-based models 

Yang et al. (2008) Phys. Rev. E, 78:031910 

Danos et al. (2007) Lect. Notes Comp. Sci. 

1. Instantiate molecules with components and states. 

2. Determine cumulative rate for each mth reaction type, 

3. Select next reaction time, 

4. Select next reaction type using the following condition: 

5. Select reactant molecules and check context. 

6. Update lists. Iterate. 

€ 

rm = km Nnn

nm∏

€ 

Δt = −ln(z1) /rtot

€ 

rj <
j=1

J−1

∑ z2rtot ≤ rj
j=1

J

∑

 List updates:



Conclusions 

  Mechanistic models of cell signaling systems can be formulated via the rule
-based modeling approach, simulated and used, for example, to provide a
 mechanistic interpretation of temporal phosphoproteomic data (not shown) 

  Comprehensive models of cell signaling systems (on the way) should serve
 as launching pads for investigating a wide array of issues related to
 development of predictive models for cell signaling systems 

•   What is required for model validation? 
•   What are the best strategies for certification (e.g., model-guided experimental

 design)? 
•   Can we quantify and track how consistent a model is with available knowledge? 



Outline 

1.  The motivation for rule-based modeling 

2.  Basic concepts of rule-based modeling 

3.  An example model specification 

4.  Methods for simulating a model 

5.  Suggested exercise 


